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Memory formation requires the placement of experienced events in
the same order in which they appeared. A large body of evidence
fromhuman studies indicates that structures in themedial temporal
lobe are critically involved in forming and maintaining such
memories, and complementing evidence from lesion and electro-
physiological work in animals support these findings. However, it
remainsunclear howsingle cells andnetworksof cells can signal this
temporal relationship between events. Here we used recordings
from single cells in the humanbrain obtainedwhile subjects viewed
repeated presentations of cinematic episodes. We found that
neuronal activity in successive time segments became gradually
correlated, and, asa result, activity inagiven timewindowbecamea
faithful predictor of the activity to follow. This correlation emerged
rapidly, within two to three presentations of an episode and
exceeded both context-independent and pure stimulus-driven
correlations. The correlation was specific for hippocampal neurons,
didnotoccur in theamygdala andanterior cingulate cortex, andwas
found for single cells, cell pairs, and triplets of cells, supporting the
notion that cell assemblies code for the temporal relationships
between sensory events. Importantly, this neuronal measure of
temporal binding successfully predicted subjects’ ability to recall
and verbally report the viewed episodes later. Ourfindings suggest
a neuronal substrate for the formation of memory of the temporal
order of events.
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Memory formation includes knowledge about temporally
dated events and the temporal relations of these events to

each other. In human episodic memory, for example, events and
concepts are linked together as they appear on the “time arrow,”
and in the same context in which they appeared (1–4).Many other
types of memory (e.g., rote and sequence learning) require the
successful encoding of the temporal relationship between events
that follow in time. Case studies as well as studies using imaging
techniques with human subjects have shown that formation and
maintenance of such memories is mediated by different structures
in the medial temporal lobe, with the hippocampus playing a
major role (1–10). It is now accepted that neurons of the hippo-
campus are especially bound to reflect associative events, as these
neurons sample inputs from a wide range of structures including
sensory areas and high-order association cortices involved in
recent event processing (2, 3).
To study electrophysiological correlates of memory formation,

research in the hippocampus of animals has focused on several
paradigms that requirememory for the temporal order of events (2,
11). These paradigms include learningof associations between pairs
of stimuli (12–15), trace conditioning in which the unconditioned
stimulus iswell separated in time from the conditioned stimulus (16,
17), delayed nonmatch-to-sample (18), sequences of locations in
spatial navigation tasks (19, 20), and order of events by spatio-
temporal context (21, 22). Recent findings provide further support
for an animal model of episodic memory in the hippocampus:
neurons were shown to encode information about different aspects

of amemory task (23–25); internally generated reactivation of spike
sequences was found during delay periods with no external cues in
single cells (26, 27) and in large cell assemblies (28); and neurons
were shown to encode gradually the temporal context of events (i.e.,
“when” the events occurred) during learning (22). In humans, we
recently reported selective reactivation of hippocampal and ento-
rhinal neurons during free verbal recall (29).
Here, we sought to examine how neurons can signal the tem-

poral relationships between events and how these patterns evolve
during memory formation. The use of single-unit recordings in
human subjects [patients with pharmacologically intractable epi-
lepsy (30)] allowed us to use a free-viewing paradigm (29) that,
unlike most animal studies, does not involve direct reinforcement,
and thus more closely resembles memory formation in real-life
scenarios. Moreover, we could relate the recorded unit activity to
subjects’ memory as assessed by conscious verbal recollections.

Results
Single andmultiunits were recorded (27 sessions in 13 individuals)
from the hippocampus (anterior hippocampus, AH, n = 180),
amygdala (n = 160), entorhinal cortex (EC, n = 224), and ante-
rior-cingulate cortex (AC, n = 107). Overall, 52% (349/671) of
recorded units were classified as single units based on strict cri-
teria, and these units were distributed homogenously between
structures. In each session, subjects freely viewed a new series of
10–16 different audiovisual clips lasting 5–10 s each. To allow
investigation of gradual formation of memory, each of the clips
was repeated six times in a pseudorandomized order (Fig. S1A).
This paradigm was used with the hypothesis that, as a clip is
viewed repeatedly, there is gradual formation of memory for the
temporal order of events presented in the clip and that the neu-
ronal activity in subsequent time segments reflects this memory
formation (Fig. S1 C and D).
As an indicator for the formation of temporal relationship

between successive time segments of neuronal activity, we first
observed and measured the relationship between activity at any
given time (t) and the activity following it (t+1). In many neu-
rons, the raw firing rate at time t during clip presentation was not
correlated initially with the subsequent firing rate (that at time
t+1) but became so after the same clip was viewed a few times
[P > 0.1 for first clip presentations (Fig. 1 A, D, and G); P < 0.01
for the sixth clip presentation (Fig. 1 B, E, and H), Pearson
correlation coefficient].
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However, the relationship between subsequent activities does
not have to be linear (i.e., low activity entails low activity and
high entails high activity), and we therefore used a more appro-
priate measure: the mutual information (MI) (31, 32) between
subsequent time bins. This measure allowed us to unveil more
complex relationships and more subtle ones. For example, an
increase in the linear correlation between successive time seg-
ments will result in an increase in the MI, but the reverse is not
necessarily true. Importantly, MI measures directly the reduction
in uncertainty about activity at time (t+1) by the knowledge of
activity at (t). In other words, it provides a measure of how well we
can predict the activity at (t+1) by the knowledge of the activity at
time (t). It is thus an adequate measure for our hypothesis.
We therefore calculated the MI between successive time seg-

ments for each neuron in each clip in each sequential presentation
of the clip. Henceforth, we refer to this measure as “temporal
relationships.” Temporal relationships are measured in percent-
age of the maximum possible information (which is log2 = 1 bit; 2
being the number of representations we used for the spike count;
Methods). We found units exhibiting an increase in temporal
relationships as a function of clip repetition in all structures (Fig.
S2 and Fig. 1 C, F, and I; P < 0.001 for all, linear regression).
Overall, 54% (362/671) of all neurons showed temporal relation-
ships for at least one clip (P < 0.01, linear regressions over clip
repetitions; Bonferroni-corrected for number of different clips).
These neurons were distributed relatively homogenously among
the different structures (AH, 59%; EC, 57%; amygdala, 48%; AC,
53%; P > 0.05, χ2; Fig. S3A).
There are two possible contributions to the origin of these

temporal relationships that are not related to memory formation.
First, there could be context-independent correlations, i.e., cor-
relations that are not related to the clips. For example, the cor-
relations could reflect changes in the synaptic activity in the
network of which the neuron is a part, or changes in the internal
state of the neuron, and these changes can occur gradually within
a session and independently of clip repetitions. To estimate
the contribution of such context-independent relationships, we
calculated the temporal relationships in blank periods preceding
clip presentation, when no external stimulus was presented, and
compared them with the temporal relationships during the clip.
In 22% of all neurons (more than expected by chance, P < 0.01,
Fisher’s exact test), the temporal relationships during the clips
significantly exceeded these context-independent relationships.
The proportion of these neurons was highest in the hippocampus
(AH, 31%; EC, 21%; amygdala, 15%; AC, 17%; P < 0.01,
χ2; Fig. S3B).

Second, there are correlations in the stimulus itself, i.e., in the
clips. The simplest example is that the same image/event continues
to appear in successive time windows. To estimate this con-
tribution, we shuffled between successive clip segments recorded
during different presentations of the same clip. In 34% of the
neurons, the temporal relationships were significantly higher than
these pure-stimulus relationships (P < 0.01, t tests, Bonferroni-
corrected). The proportion of these neurons was much higher in
the hippocampus (AH, 49%; EC, 34%; amygdala, 23%; AC, 25%;
P < 0.001, χ2; Fig. S3C). We combined the pure-stimulus and
context-independent contributions in one model for each neuron
(Fisher’s combined test). Overall, the distribution of P values for
all cells was skewed clearly to the left for 19% of neurons (P <
0.05), showing that a substantial component of the correlations
between successive time windows cannot be explained by other
contributions (P < 0.01, χ2).
To observe the formation of temporal relationships within the

different structures, we averaged the temporal relationships over
all neurons over all clips, but within each clip repetition sepa-
rately (1–6, x axes in Fig. 2) and within each brain structure
separately (Fig. 2 A–D). In all structures, the pure-stimulus (solid
black line) and the context-independent (green line) relation-
ships were significant for all clip repetitions (P < 0.05, t tests)
compared with baseline patterns derived from destroying all
temporal structure (dashed lines), with comparable magnitude
across structures [P > 0.05, analysis of variance (ANOVA)].
Importantly, the temporal relationships (red line) showed a
significant gradual increase in the hippocampus (P < 0.001, lin-
ear regression) (Fig. 2D) but not in the other structures (P >
0.05) (Fig. 2 A–C), suggesting that the temporal relationships are
not related to possible alterations in behavior with clip repetition
(e.g., general arousal). Only in the hippocampus did the tem-
poral relationships significantly exceed both the pure-stimulus
and the context-independent patterns in late repetitions (P <
0.001, t tests for repetitions 2–6). This finding was enhanced
when analysis was restricted to clip-responsive neurons (n = 189,
28% of all neurons, and n = 51 hippocampal neurons) (Fig. 2E)
but occurred in nonresponsive neurons as well (P < 0.01, t tests).
The finding also was replicated when standard linear methods as
Pearson correlation were used to measure the temporal rela-
tionships (P < 0.01, linear regression) (Fig. 2F). We further
examined temporal relationships in simultaneously recorded
pairs (n = 4,884) and triplets (n = 2,1061) of neurons and found
that a significant increase in temporal relationships is evident in
the EC as well (P < 0.01 for both AH and EC; P > 0.05 for
amygdala and AC, linear regressions; Fig. S4B).

A B C

D E F
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Fig. 1. Neuronal activity during clip presentation
and development of temporal relationships. Firing
rate in first (A) and sixth (B) clip presentation for
one hippocampal neuron is shown in green, over-
laid by the same firing rate shifted by 250 ms (in
red). The Pearson correlation coefficient between
these two traces is marked within each panel. (C)
Gradual development of temporal relationships
(red) based on MI between spike counts at succes-
sive time windows (in % of maximal information;
see text and Fig. S1). Dashed line shows a baseline
derived from destroying all temporal patterns, with
the 95% confidence interval in yellow. Inset shows
average firing rate in different clip repetitions. (D–I)
The same analysis is shown for two other neurons.
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If the neuronal measure we introduce here indeed reflects the
gradual formation of memory for the temporal relationship
between experienced events during encoding, then this measure
should be reflected in the subjects’ actual memory. At the end of
each session, subjects were asked to recall freely and report
verbally the clips (Fig. S1B), and they did so with above-chance
performance (Fig. 3A). We found a highly significant correlation
between the level of temporal relationships in hippocampal
neurons and success in the spontaneous free-recall task for
individual subjects (r= 0.87, P < 0.01) (Fig. 3B). This correlation
was not seen in any of the other structures (r= −0.04, P > 0.5 for
all; P > 0.1 for each structure separately) (Fig. 3C). We conclude
that the level of temporal relationships in hippocampal single
neurons during viewing is related directly to the delayed memory
performance of individual subjects.
We verified that the changes we observed do not reflect changes

in overall firing rate, which was stable in the hippocampus (as well
as in other structures) across clip repetition and along clip dura-
tion (P > 0.2 for repetition and P > 0.3 for duration, two-way
ANOVA; Fig. S5A). Similarly, the variability of firing rates of
hippocampal cells was stable across clip repetition and along clip
duration (P > 0.3 for repetition and P > 0.3 for duration, two-way
ANOVA; Fig. S5B). The experimental context and the duration
of time spent viewing clips had no effect on the temporal rela-
tionships (calculating the temporal relationships in viewings of
entirely different movie clips but from the same repetition, P >
0.1, ANOVA). Although temporal relationships could stem from
slower dynamics or sustained/tonic bursts that develop as the
session progresses, we could not find any evidence for changes in

levels of activity across successive time segments (P > 0.2,
ANOVA; Fig. S5C) or of changes in the width of the autocorre-
lations that can indicate development of slow oscillations (P> 0.1,
ANOVA; Fig. S5D).
Finally, we received further confirmation that our results stem

from a developing relationship between successive time segments
rather than from changes in the statistics of the firing rates by
separately calculating the two components of the MI: the mar-
ginal entropy and the conditional entropy (31) Marginal entropy
tests for changes in the statistics of the firing rate, and the con-
ditional entropy tests for the relationship between successive time
windows. We found that the increase in theMI was caused mainly
by a reduction in the conditional entropy (P < 0.001, linear
regression) (solid line in Fig. S5E) rather than by an increase in
the marginal entropy (dashed line in Fig. S5E).

Discussion
Our findings demonstrate a hippocampal neuronal correlate for
creating temporal relationships between stimuli that follow in
time. We hypothesize that this correlate reflects a general mech-
anism that is used whenever the brain is required to create tem-
poral associations between stimuli. These findings are in line with
and provides direct support to the current dogma in memory
research stating that neurons of the hippocampus are able to
reflect associative events because they receive converging infor-
mation about recent experienced events from sensory areas and
high-order association cortices (2, 3). This neuronal correlate was
detected in the hippocampus but not in other areas, probably due
to the distinctive properties of the hippocampus: The temporal
relationships we observed were context (clip)-specific. In real life,
an event/stimulus can lead to many possible events/stimuli in dif-
ferent contexts and so can the specific neuronal activity associated
with it; the hippocampus is unique in its ability to integrate and
take into account the successive events and the context in which
they appeared (3, 4), and thus it is capable of creating such
branching representations. Additionally, we found these temporal
relationships in pairs and triplets of simultaneously recorded cells.
This finding is in line with Hebb’s original proposal (33) that
neuronal assemblies can be linked temporally and subserve the
evolution of internal states in general (34) and episodic memory in
particular (28).
Our study provides important information complementing

electrophysiological findings in animals. Studying human subjects,

A B C

D E F

Fig. 2. Development of temporal relationships. Averaged MI between suc-
cessive time windows as a function of clip repetition for the amygdala (A),
anterior cingulate (B), entorhinal cortex (C), and hippocampus (D). Temporal
relationships (red lines) are calculated during the clip presentation; context-
independent relationships (green lines) are calculated on a 2-s period of black
screen before clip presentation; pure-stimulus relationships (solid black lines)
are derived by shuffling corresponding time windows between different repe-
titions of the same clip; baseline patterns (dashed lines) are derived by shuffling
timewindowswithin the same presentation (they are not zero but are an order
of magnitude smaller). Temporal relationships (y axis) are presented as per-
centage of maximum possible MI. (E) Same analysis is shown for the subset of
responsive neurons in the hippocampus (n = 51, P < 0.05). Neurons were con-
sidered responsive if their firing rate distribution differed from that of the
baseline period for at least one clip. P values were Bonferron-corrected for the
number of clips presented in that session. (F) Shown are temporal relationships
as measured alternatively by standard Pearson correlation coefficient for
all hippocampal neurons (red line) (P < 0.01, linear regression), context-
independent for hippocampal neurons (green line) (P > 0.05), and temporal
relationships for neurons from all other structures (black line) (P > 0.05).

A

B C

Fig. 3. Individual memory performance is predicted by temporal relation-
ships in hippocampal neurons. (A) Individualmemory performanceper subject
as measured by the percentage of freely recalled clips out of all clips. (B) The
temporal relationships in the last clip repetition averaged over all hippo-
campal neurons recorded from a subject (x axis) are plotted against this sub-
ject’s recall performance (r = 0.867, P < 0.001, linear regression). (C) Same
analysis averaged over neurons from all other structures (r = −0.04, P > 0.5,
linear regression).
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we were able to use a paradigm that mimic memory formation
under more natural conditions. Unlike most animal studies, and
more like real-life scenarios, we used a free-viewing paradigm
with no direct reinforcement involved. Moreover, most animal
studies use paradigms in which learning takes many trials, and the
animals typically are overtrained, but human memory can form
following a single experience (1–4). Here, the neuronal changes
already were seen during the second viewing, namely after only
one viewing, as happens in real life episodic memory formation.
Although our analysis was designed specifically to detect for-

mation of temporal relationships in neuronal activity and there-
fore to investigate a neural correlate for formation of temporal
order inmemory, a few other alternative interpretations should be
considered. One such possibility is that subjects develop better
memory for the individual elements of the clips. In this inter-
pretation, the neural correlate we found reflects a visual familiarity
signal that develops over time in thehippocampus.However, it was
shown recently that the total number of spikes elicited in a hip-
pocampal neuron actually is reduced in response to repeated
presentations of pictures (still images) (35), although visual
familiarity increases in such a scenario. It is also possible that the
subjects were able to retrieve or recognize more and more infor-
mationwith each repetition. This interpretation also would fit with
the remarkable correlation we found between the neuronal
measure and the subsequent individual memory, because it has
been shown that memory retrieval improves subsequent memory
performance (36). Although we cannot rule out these possible
contributions completely, we argue that the specific nature and
design of our analysis, together with the lack of changes in sim-
ilarity and nonconditional statistics of firing rates across time
segments, and the relatively small role of the hippocampus in
familiarity-based object recognition (37), point to a unique signal
that develops in the hippocampus and is related to encoding
of temporal relationships. Accordingly, a recent functional MRI
study found that hippocampal activation is related specifically to
retrieval of the temporal order of events and correlates positively
with accuracy of sequence recall for naturalistic movie scenes (10).
Another important aspect of our analysis is that it does not

assume a constancy of the representation in a single neuron (i.e.,
linking a reproducible firing pattern to a repeated external event).
Rather, it explores the relationship of a neuron to itself in con-
secutive times, thus taking into account the global state of the
neural networkat anygiven time. Indeed, it hasbeen shown that the
overall state of the network before stimulus presentation might be
an important contributor to the neuronal representation of that
stimulus (38), and thus the representation (i.e., firing rate of indi-
vidual neurons) can change from one clip repetition to the next.
Our approach, by not measuring spike counts directly but instead
looking at relationships between spike counts in successive time
segments, bypasses these dynamic fluctuations and reveals the
formation of patterns that otherwise would remain hidden.
To conclude, our results support the conjecture that the brain

encodes temporal information as changes in the state of thenetwork
(39) and that memories are encoded as stable states of neural net-
works (40). In this interpretation, the changes we see in the activity
are changes in the internal representation of the external stimuli.
The formation ofmemory heremeans that the representation of an
external stimulus (a network state) would now converge internally
and lead more reliably to the representation of other external
stimuli (other network states) that followed in time.We suggest that
the approach developed here of looking at successive time seg-
ments, together with approaches for measuring the coactivity of
high-dimensionality networks (41–43), will provide a more com-
plete understanding of how the brain forms temporal memories.

Materials and Methods
Subjects and Recordings. The datawere collected in 27 recording sessions from
13 subjects, age 18–54 years, with pharmacologically intractable epilepsy.

(Ten subjects were right-handed; seven were males). Extensive noninvasive
monitoring did not yield concordant data corresponding to a single resect-
able epileptogenic focus. Therefore, the subjects were implanted with
chronic depth electrodes for 7–10 days to determine the seizure focus for
possible surgical resection (30, 44). Here, we report data from sites in the
hippocampus, amygdala, entorhinal cortex, and anterior cingulate (Table S1).
The same experiments were used recently to show reactivation of neuronal
activity during free recall (29). All studies conformed to the guidelines of the
Medical Institutional Review Board at University of California, Los Angeles.
The electrode locations were based exclusively on clinical criteria and were
verified by MRI or by CT coregistered to preoperative MRI. Each electrode
consisted of a flexible polyurethane probe containing nine 40-μm platinum-
iridium microwires protruding ∼4 mm into the tissue beyond the tip of the
probe. Eight microwires were active, recording channels andwere referenced
to the ninth, lower-impedance, microwire. The differential signal from the
microwires was amplified by using a 64-channel Neuralynx system, filtered
between 1 and 9,000 Hz and sampled at 28 kHz. One recording channel was
used to record simultaneously the signal from a microphone attached to the
subject’s shirt. All sessions were conducted at the subject’s quiet bedside
using a standard laptop screen and speakers.

Experimental Paradigm. Each recording experiment lasted about an hour and
was composed of one to three cycles consisting of two parts: a viewing session
and a free-recall session.
Viewing session. In each viewing session, subjects were presented with a series
of 10–16 different, new audiovisual movie clips lasting 5–10 s each. Each clip
depicted an “episode” featuring famous people or characters engaged in
activity (e.g., a segment from the animated television series The Simpsons,
President Bush announcing the capture of Saddam Hussein), landmarks
photographed from various views (e.g., coastline of New York City, aerial
view of the Golden Gate Bridge), animals in motion (e.g., koala climbing on
a tree, snake eating an egg), or objects depicted in a dynamic context. Each
clip was presented at least six times, and the order of presentation was
pseudorandomized. There were six rounds of clips in each session; each
round contained all the clips but in a different order; the same clip never was
presented twice consecutively; all clips within a single session were of same
length; in some of the experiments interleaving blank periods (“blanks”) of
5 s were used occasionally within a group of successive clips, and in other
experiments interleaving blanks of 2–3 s were used before each clip. Subjects
were asked to watch the clips freely. After the viewing session subjects
performed an intervening arithmetic task (1 min) in which they were asked
to arrange and read the digits of six-digit numbers in increasing order
(example: for the number 285739, read “2-3-5-7-8-9”). Numbers were pre-
sented for 6 s with 1-s interleaving blanks. The first three subjects were
engaged in a conversation with the people present in the room during the
interval between viewing and recall sessions.
Free-recall session. In the free-recall session that immediately followed the
intervening task, subjects (n = 11; for technical reasons we were not able to
record the free-recall session in two subjects) were asked to recall freely the
clips they had just seen and to report verbally immediately when a clip
“comes to mind.” This session was not limited in time and was stopped only
when the subject recalled all the clips correctly or when the subject could not
remember any more clips. On average, the free-recall session lasted 4.5 min.
The ratio of video clips that were freely recalled correctly was significantly
above chance level for all subjects and is given in Fig. 3A.

Data Analysis. Spike sorting for unit isolation. Spike detection and sorting was
applied to the continuous recordings of each session (about 1 h) by using a
well-established clustering algorithm (45). After sorting, the clusters were
classified into single units or multiunits based on (i) the spike shape and its
variance; (ii) the ratio between the spike peak value and the noise level; (iii)
the ISI distribution of each cluster; and (iv) the presence of a refractory
period for the single units [i.e., <1% spikes within 3 ms interspike interval
(ISI)]. Using these criteria, 52% of all recorded cells were classified as single
cells and the rest as multiunit. Note our result is strengthened because it
occurs in multiunits as well as in single cells: we show that the network state
in a given time segment (measured by the combined activity of the few
neurons that compose a multiunit) becomes a reliable predictor of the
network state in the successive time segment.
Calculation of temporal relationships. For each neuron (n = 671), spikes were
binned into timewindowsof250msto formvectors [sc(1),sc(2),. . .sc(t),sc(t+1),. . .]
where sc(t) is the spike count in time window t. We then calculated the MI
between sc(t) and sc(t+1) using all possible pairs from each single clip pre-
sentation . Please see Robustness below for standard correlation analysis and
sensitivity to window size.
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MI was calculated with the standard equation (31, 32):

I ¼− ∑
t
PðscðtÞÞlog2PðscðtÞÞ þ∑

t
P
�
sc
�
tþ 1

��
∑
t
PðscðtÞj

scðtþ 1ÞÞlog2PðscðtÞjscðtþ 1ÞÞ
We used MI as a measure for temporal relationship for several reasons.

First, our hypothesis means that sc(t+1) will follow sc(t) more reliably. Thus,
sc(t) will be a better predictor of sc(t+1). MI measures this reliability directly: it
measures the reduction in uncertainty about sc(t+1) by the knowledge of sc
(t) (uncertainty as measured by the entropy of the distribution). In other
words, it provides a measure of how well we can predict sc(t+1) by the
knowledge of sc(t). [MI gives an upper bound on how well, on average, an
oracle predictor that can use all the information available can estimate sc
(t+1) from sc(t) (32)].

Second, it is natural to use MI with a small finite discrete set of repre-
sentations for the spike count (i.e., categorical variables). Here, we used
the transformation

scðtÞ ¼ 0j0; scðtÞ ¼ 1j≥1
(see also Robustness below). This representation makes sense when using
time windows of 50–500 ms and taking into account the relatively low (∼4
Hz) firing rate in structures of the medial temporal lobe (Fig. S5A). The
actual spike counts in such short time windows are thus usually less than
two. Most other measures of correlation are suboptimal in such cases.

Third, MI does not assume any structure for the correlations or of the
underlying distribution. For example, an increase in the linear correlation
between successive time windows will result in an increase in the MI, but the
reverse is not necessarily true. Thus, using MI, we cover more options for
increased reliability that would not be detected using other methods (e.g.,
using only Pearson coefficient; see Robustness below).

Finally, because of its categorical representation, MI has a natural
extension for representing patterns in cell assemblies of few neurons. For
example, for two simultaneously recorded neurons (Fig. S4A), there are four
possible patterns for each window: [0,0], [0,1], [1,0], and [1,1], in which the
first number indicates the spike count (0 or 1 or more) in cell 1 and the
second number indicates the spike count (0 or 1 or more) in cell 2.

Themeasure ofMI is subject to bias when the distribution is undersampled.
Therefore we used an analytical bias correction when looking at cell pairs or
triplets (46). Neural assemblies of n > 3 require much larger amounts of data
and could not be measured in the current paradigm.
Significance of the temporal relationships. To test for significance of the MI
between successive timewindows, we shuffled the timewindows within each
clip, thus removing any temporal relationship. This procedure was repeated
50 times, and the resultant MI was averaged to obtain the baseline patterns
with standard errors. Then these patterns were compared with the temporal
relationships in each clip repetition by t tests (comparing all neurons in each
region separately), and P values were corrected by a Bonferroni correction
for the six clip repetitions.

Several possible factors not related to memory formation may contribute
to the origin of the temporal relationships.

First, there are context-independent correlations. For example, the corre-
lations could reflect changes in the synaptic activity in a network of which the
neuron is a part, and these changes could occur gradually within a session and
independentlyofcliprepetitions.Alternatively, thesepatternscouldberelated
to changes in the internal state of the neuron (e.g., slow dynamics for inte-
gration of synaptic currents). To estimate such context-independent patterns,
wecalculated theMI in theblankperiodspreceding clippresentation,whenno
external stimulus was presented.

Second, there are correlations in the stimulus itself, i.e., in the clips. The
simplestexampleisthatthesameimage/eventcontinuestoappearinsuccessive
timewindows. This possibility is especially relevanthere, because the temporal
windows were constructed without reference to a specific clip; therefore it is
possible for an image that appears in onewindow to persist and appear in the
following time window. To control for such pure-stimulus relationships, we
shuffled time windows across different repetitions of the same clip, thus
keepingeachwindow in its original place in the clipand thereforemaintaining
the temporal relationships between the external stimuli. For example, if sc(t)
comes from the second clip repetition, sc(t+1) may come from the fourth clip
repetition.Thus, itpreservestheexternalstimuluspresentattimestandt+1.For
each clip repetition, we produced 50 shuffles and averaged the result. These
results then were compared with the temporal relationships in each clip rep-
etition by t tests (comparing all neurons in each region separately), and P
values were corrected by a Bonferroni correction for the six clip repetitions.

Finally, the experimental context (e.g., the room) and the mere passage of
time could affect the formation of temporal relationships. To control for
these possibilities, we shuffled the clips to use six viewings of entirely dif-
ferent movie clips, but within the same repetition of each clip (e.g., all come
from repetition 1; then all come from repetition 2, and so on).
Robustness.All calculations were repeated by segmenting time into bins of 50,
100, 250, or 500 ms and by using discretization of spike counts to 0/≥1 spikes,
0/1/≥2 spikes, or 0/1/2/≥3 spikes. The results were unchanged for all combi-
nations, and the temporal relationships increased significantly only in the
hippocampus (P < 0.01, linear regression).

We also repeated the analysis using a standard noncategorical Pearson
correlation coefficient (Fig. 2F). To do so, we calculated the correlation coef-
ficient between the vector [sc(1), sc(2),. . . sc(t), sc(t + 1),. . .] and the shifted
vector [sc(2), sc(3),. . . sc(t + 1), sc(t + 2),. . .] as a measure for temporal relation-
ships. Results were similar and again were highly significant only in the hip-
pocampus (P < 0.01, ANOVA, over repetitions using all neurons). In accordance
with the aforementioned description of why this measure is suboptimal, the
slope over repetitions was slightly decreased thanwhenMI was used (as in Fig.
2D), but still was significantly positive (P < 0.01, linear regression, t tests).
Responsive neurons. Responsive neurons were chosen if they had a different
distribution of firing rates during the different repetitions of at least one clip
viewing compared with the baseline/blank period before the clip when no
external stimulus was present (Mann–Whitney nonparametric test, P < 0.05,
Bonferroni-corrected for the number of clips presented in a session).

The analysis then was repeated to observe temporal relationships in
responsive neurons only (n = 189, 28% of all neurons). The results were
qualitatively similar for all structures but they were quantitatively signifi-
cantly better for the hippocampus (n = 51, P < 0.01, t tests between max-
imum information at last repetition) (Fig. 2E). However, the effect seen
when all neurons are included (Fig. 2D) is not a diluted effect stemming
from responsive cells alone, because we observed a similar increase in
temporal relationships for the “nonresponsive” hippocampal cells as well
(n = 129, P < 0.01, t tests).
Fluctuations in activity statistics. There was no correlation between changes
infiringratestatisticsandthetemporal relationships, ascanbeseen inthesingle-
cell examples (Fig. 1 C, F, and I) and the stability of the firing rate as a factor of
clip repetitions and clip duration (Fig. S5A). This finding also held true for the
stability of the variability of thefiring rate (Fig. S5B).Wealso lookedat similarity
of spike counts across successive time windows. Such increased similarity, if
found, could result from slower dynamics that develops as the session pro-
gresses andwould result in higher information content between successive time
windows. Similarity was measured as spike count in a time window minus the
spike count in the successive time window and averaged over all possible time
windows (Fig. S5C). We also tested for development of slow oscillations by
calculating standard autocorrelations (Fig. S5D).

Although there was only little difference in the average firing rate during
theblank periods preceding the clips andduring the clip presentation,we used
a further “thinning” method (47) to assure that the statistical differences
between temporal relationships (calculated on activity during the clips) and
the context-independent patterns (calculated on activity during the blank
periods) are not caused by the small difference in the number of spikes
available. We randomly down-sampled the activity during the clips to match
the average number of spikes in the blank periods preceding them and
recalculated the temporal relationships. Repeating this process 50 times and
averaging the findings yielded similar results, and temporal relationships still
were significantly higher than context-independent patterns (P < 0.001, t
tests). We used a similar method to equalize the number of spikes along the
session (within and before clips): For each neuron, we ordered the clips
according to the number of spikes elicited and randomly down-sampled the
spikes to match the lowest count. Temporal relationships still were sig-
nificantly monotonic, increasing and higher than other patterns (P < 0.01,
t tests).

Finally and importantly, the MI measure consists of two components: the
marginal entropyandtheconditional entropy (31,32).Wecalculated these two
components and found that the increase in the MI came mainly from a
reduction in the conditional entropy (P < 0.001, linear regression) (solid line in
Fig. S5E) , rather than from an increase in themarginal entropy (dashed line in
Fig. S5E). This finding provides further support that the temporal relationships
are a measure of temporal binding of activity in successive time segments.
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