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Children do not distinguish 
efficient from inefficient actions 
during observation
Ori Ossmy1*, Danyang Han1, Brianna E. Kaplan1, Melody Xu1, Catherine Bianco1, 
Roy Mukamel2 & Karen E. Adolph1

Observation is a powerful way to learn efficient actions from others. However, the role of observers’ 
motor skill in assessing efficiency of others is unknown. Preschoolers are notoriously poor at 
performing multi-step actions like grasping the handle of a tool. Preschoolers (N = 22) and adults 
(N = 22) watched video-recorded actors perform efficient and inefficient tool use. Eye tracking showed 
that preschoolers and adults looked equally long at the videos, but adults looked longer than children 
at how actors grasped the tool. Deep learning analyses of participants’ eye gaze distinguished efficient 
from inefficient grasps for adults, but not for children. Moreover, only adults showed differential 
action-related pupil dilation and neural activity (suppressed oscillation power in the mu frequency) 
while observing efficient vs. inefficient grasps. Thus, children observe multi-step actions without 
“seeing” whether the initial step is efficient. Findings suggest that observer’s own motor efficiency 
determines whether they can perceive action efficiency in others.

Observing other people’s behavior has a powerful effect on observers’ own behavior. Mere action observa-
tion—perceiving without doing—modifies parameters such as movement trajectory and  velocity1–3 and grip 
and squeeze  forces4,5. Indeed, people’s own actions can become more efficient after observing someone else 
performing the same  actions6,7.

Nonetheless, observing and doing actions provide very different sources of information about action effi-
ciency. When performing an action, people physically experience the efficiency of the action through percep-
tual feedback. Thus, people can assess the efficiency of their actions and facilitate motor control by comparing 
alternative actions and selecting the most efficient option for the specific  situation8. However, when observing 
other people’s actions, observers do not physically experience whether the action is efficient or not. Instead, they 
must estimate efficiency based solely on visual  information9. Motor-cognition  theories10 propose that seeing an 
action activates the neural motor program used when performing the  action6,11. So, observers can facilitate their 
own motor control by comparing the observed action to the neural representation in their motor  system12–14.

Despite the importance of observers’ own motor skills for learning by doing, the question is still open regard-
ing the importance of observers’ motor skills for learning via observation. That is, can observers, who are not 
efficient actors themselves, distinguish efficient from inefficient actions in others? The answer is important for 
identifying the features of observed actions that are encoded in observers’ neural motor system and for under-
standing how action observation facilitates motor learning. Presumably, to obtain the necessary information 
about efficiency, observers must direct their gaze to the relevant action at the appropriate time. And to differenti-
ate efficient from inefficient actions, observers’ brains must register the visual information they obtain.

Here, we addressed the question of whether inefficient actors can distinguish efficient from inefficient actions 
in others by exploiting children’s inefficient performance in multi-step actions like tool use. Previous work showed 
that children fare poorly when efficient tool use requires the initial movement to take the future end goal into 
 account15. For example, to pound a peg when the handle of a hammer points away from their dominant hand 
(shown in Fig. 1A), adults use an atypical, underhand grip to grasp the hammer to enable a smooth transition to 
efficient  hammering16,17. In contrast, children repeatedly use a habitual overhand grip, so they end up holding 
the handle in an inefficient  awkward grasp position to pound the peg (Fig. 1B) and must subsequently adjust 
their  grip16,17. Here, we tested children at similar ages (3–5 years) when they typically use an inefficient initial 
grip to grasp the handle of a hammer. Children and adults observed videos of actors using efficient and inefficient 
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initial grips to grasp a hammer to pound a peg (compare Fig. 1A, B and videos at databrary.org/volume/321/
slot/44641/-?asset=231554 and databrary.org/volume/321/slot/44643/-?asset=231573).

We tested three potential outcomes: (1) If efficient action performance is unnecessary to distinguish efficient 
from inefficient actions in others, then both adults and children should obtain the relevant visual information 
by directing their gaze to the actor’s initial grip and both groups should show differential physiological responses 
to the information they obtain. (2) However, if efficient action performance is required to distinguish efficient 
from inefficient actions in others, children should fail to direct their gaze to the actor’s initial grip and/or fail to 
differentiate the grips in their physiological responses. Note that this outcome supports the “motor-resonance” 
theory—that observers’ own motor experiences contribute to perception of others’  actions6,10—only if children 
both look at the actions and show physiological responses to the actions; that is, children must provide evidence 
that they attended to the videos. (3) Of course, children differ from adults in many important ways beyond the 
efficiency of their manual actions (visual attention to a task, information-processing time, etc.). Thus, if children 
do not attend to the videos or do not show physiological responses to the displays, we must conclude that the 
experiment failed to adequately address the question of mandatory links between action performance and action 
observation for correctly evaluating action efficiency in others.

We used eye tracking to assess visual attention to each part of the action—where each participant looked and 
when. In particular, we asked whether both children and adults looked at the relevant part of the scene at the 
appropriate time to gather visual information about the efficiency of actors’ initial grip before pounding the peg 
(i.e., looking at the hammer and hand during actors’ reach and grasp). We used deep artificial neural networks 
and probability maps to test whether participants’ looking patterns distinguished efficient from inefficient grasps. 
We used pupil dilation and electroencephalography (EEG) to test whether participants’ physiological responses 
provided evidence of registering differences between efficient and inefficient  grips18, that is, whether participants 
“see” as well as look at the initial step in a multi-step action. Accumulated time looking at the displays and physi-
ological responses to the displays provide evidence of overall visual attention.

Results
Overall, children and adults looked equally long at the displays during the reach and initial grasp and during 
the pounding of the peg (ps > 0.10 for all looking measures). Likewise, children and adults looked equally long 
at displays of the efficient and inefficient actions (all ps > 0.10). However, the groups were only similar when we 
analyzed accumulated looking time. As we report below, the two groups differed in real-time patterns of look-
ing—where participants looked and when as the event unfolded–and in their physiological responses to efficient 
and inefficient actions.

Looking at areas of interest relevant for assessing action efficiency. Despite looking at the dis-
plays, for most children, looking at the relevant areas of interest (AOIs shown by warm colors in Fig. 2A) was 
lower than adult levels (red lines in Fig. 2B). However, every measure of looking—fixation time, dwell time, and 
gaze revisits—increased with age; rs(20) > 0.43, ps < 0.05; scatters in Fig.  2B. Correlations with age remained 
significant after removing the oldest child, rs(19) > 0.43, ps < 0.05.

As shown in Fig. 2C, children and adults looked equally long at the final goal target (peg), but children looked 
less at the areas relevant for action efficiency (hammer and dominant hand). ANOVAs on fixation time, per-
cent dwell time, and number of revisits, using 2 (ages) × 2 (efficient vs. inefficient actions) × 5 (AOIs) as factors, 
showed main effects only for age and AOI, and interactions between age and AOI (Table 1). Sidak-corrected 
post hoc comparisons confirmed higher percentages for all measures of looking at the hammer and dominant 
hand in adults than children, and no age differences in looking at the peg and non-relevant AOIs (face and 
non-dominant hand).

Adults also showed more gaze shifts among relevant AOIs than children. Each vertex in Fig. 2D represents 
an AOI, and the thickness of each black line represents the average number of transitions between the pair of 
AOIs in both directions (e.g., a gaze shift from the dominant hand to the hammer and a gaze shift from the ham-
mer to the dominant hand count as 2 transitions between these AOIs). A 2 (ages) × 10 (pairs of AOIs) ANOVA 
confirmed main effects for age, pair, and an interaction between age and pair (Table 2). Sidak-corrected post 
hoc tests showed that the hammer-to-peg and hammer-to-dominant-hand transitions were higher in adults 
compared to children.

Looking at the right thing at the right time. Accumulated measures of looking do not necessarily 
reflect the temporal dynamics of looking in the key moments of the action. To obtain visual information about 
action efficiency, observers must look at the relevant AOIs at the right time in the action sequence. Thus, we per-
formed two real-time analyses—temporal probability maps and deep learning (see Methods). Figure 3A visually 
illustrates the average temporal probability map across all video frames (from movement onset to initial grip) 
for each age group by varying the opacity of each pixel. If the average probability of fixating a specific pixel is 
0 (i.e., no participant fixated that pixel), the pixel is completely opaque (as in the outer regions of the child and 
adult maps). The pixel becomes less opaque as the probability of fixation increases (as in the hammer region of 
the adult map). When the probability of fixating a specific pixel is 1 (i.e., every participant fixated that pixel), 
the pixel is completely transparent, and the display is clearly visible in the figure. Group comparisons for each 
pixel showed significant differences inside the circular region in the difference map (map at far right of Fig. 3A); 
ts(42) > 3.58, ps < 0.05, false discovery rate corrected for multiple comparisons). In other words, adults looked 
more than children at the pixels inside the red circle when the actor reached out and grasped the handle, mean-
ing that adults were more likely than children to fixate the handle of the hammer when the actor initially reached 
and grasped it.
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Deep-learning analysis successfully distinguished efficient from inefficient planning based on the "looking 
videos" (see Methods) of every adult—that is, where adults looked as the event unfolded. In contrast, the analysis 
successfully distinguished looking videos only for a small subset of children (6 of 22). As shown in Fig. 3B, the 
mean accuracy across participants of the integrated CNN (convolutional neural network) and LSTM (long-short 
term memory) classifier for the type of action (efficient vs. inefficient) was M = 76.2%, SD = 11.59, when it was 
trained on adults’ looking patterns, but only M = 64.9%, SD = 8.32, when it was trained on children’s looking 
patterns. Classification accuracy in the children was unrelated to their age r(20) = 0.21, p = 0.34. These findings 
show that children and adults gathered different visual information as expressed by differences in the temporal 
dynamics of their looking patterns.

Pupil dilation. Pupil dilation reflects observers’ physiological responses to the displays. Adults showed 
greater pupil dilation when observing inefficient planning than when observing efficient planning at M = 0.7–
1.4 s after the moment of initial grip (Fig. 4, gray area); ts(42) > 2.02, ps < 0.05. Increased pupil dilation was absent 
in children (Fig. 4; ts(42) < 0.83, ps > 0.40). Given that the known delay in pupil dilation is 1–1.5 s after the visual 
 event18,19, this finding indicates a difference in adults’ attention to the different grips. The lack of difference in 
children’s pupillary response in the moments following the initial grasp corroborates failure of deep learning 
analyses to classify efficiency based on children’s looking videos.

Neural activity. We analyzed the neural data in two stages—localization and classification. In the localiza-
tion stage, we used the data obtained during observation of two additional videos to identify frequencies, times, 
and electrodes in which neural activity was sensitive to action observation. A 2 (ages) × 2 (test video or localizer 
video) ANOVA for looking measures (fixation time, percent dwell time, and number of revisits) on task-relevant 
areas validated that participants looked at the localizer videos similarly to the test videos. We found no main 
effect of video type Fs(1,175) = 0.72, ps > 0.39, and no interaction between age and video type Fs(1,175) = 0.81, 
ps > 0.36.

We used a data-driven approach using nonparametric cluster analysis to examine significant event-related 
spectral perturbation (ERSP) locked to movement onset in all participants and electrodes. Table 3 shows the 
frequencies of the individual EEG signal in which oscillation power in sensorimotor sites was significantly sup-
pressed relative to baseline. The average multi-participant ERSP maps for each group (Fig. 5A) are consistent 
with previous  studies20 and confirm activity suppression in the mu band (children: 6–9 Hz, M = −0.94 SD = 0.86, 
t(21) = 5.13, p < 0.00; adults: 8–13 Hz, M = −0.42 SD = 0.6, t(21) = 3.23, p < 0.00; unequal variance t-test compared 
to zero). These findings indicate increased event-related desynchronization of the EEG signal in both groups, 
following observation of others’ actions.

wireless EEG

remote
eye tracker

Inefficient

overhand initial grip

inefficient hammering

underhand initial grip

efficient hammering

Efficient
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Figure 1.  Displays and experimental set up. Participants observed an adult actor pound a peg using a hammer 
and a pegboard. Video displays were designed to distinguish perception of efficient versus inefficient means of 
using the hammer to pound the peg. In all displays, the action started with the hammer handle pointing away 
from the dominant hand. (A) In the “efficient” displays, the action began with an underhand, radial grip that led 
to a comfortable overhand, radial grip to pound the peg. This is the grip used by adults in previous work. (B) In 
the “inefficient” displays, the action began with a habitual, overhand, ulnar grip that led to inefficient tool use. 
This is the grip used by children in previous work. (C) Experimental set up for children with remote eye tracker 
and wireless EEG. Adults sat on an adult-sized chair.
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Figure 2.  Looking at areas of interest (AOIs). (A) Areas of interest for eye-tracking analyses. We calculated amount of looking to 5 
AOIs during each video: 3 task-relevant AOIs—hammer (yellow), peg (red), dominant hand  (orange), and 2 task-irrelevant AOIs —
the face and the non-dominant hand (blue). Right-handed participants observed displays of actors using their right hand to pound the 
peg, and vice versa for left-handed participants. (B) Correlations between children’s age and measures of looking to the AOIs: percent 
fixation time, percent dwell time, and number of revisits (ps < .05). Red dotted lines indicate adult averages. After excluding the outlier 
(marked in blue), correlations remained significant, rs(19) > .43, ps < .05. (C) Measures of looking to AOIs for each group averaged 
across videos and trials. For fixation time, dwell time, and number of revisits, adults looked significantly more at the hammer and the 
dominant hand (all ps < .01) compared to children. (D) Transitions between each pair of AOIs. Line thickness denotes the average 
number of transitions between AOIs. Compared to children, adults shifted their gaze more between the dominant hand and the 
hammer (p < .01), and between the hammer and the peg (p < .05).
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Table 1.  Gaze-shifts. 2 (ages) × 10 (pairs of AOIs) ANOVA results for gaze shifts between AOIs.

Fixation time Dwell time Revisits

Age F(1,440) = 26.31 p < .00* F(1,440) = 21.63 p < .00* F(1,440) = 74.57 p < .00*

Action F(1,440) = .61 p = .43 F(1,440) = .20 p = .65 F(1,440) = .72 p = .39

AOI F(3,440) = 103.81 p < .00* F(3,440) = 86.92 p < .00* F(3,440) = 136.95 p < .00*

Age × action F(1,440) = .00 p = .98 F(1,440) = .00 p = .97 F(1,440) = .00 p = .99

Age × AOI F(3,440) = 9.70 p < .00* F(3,440) = 8.24 p < .00* F(3,440) = 30.77 p < .00*

AOI × action F(3,440) = .12 p = .94 F(3,440) = .10 p = .98 F(3,440) = .44 p = .72

Age × action × AOI F(3,440) = .52 p = .66 F(3,440) = .39 p = .81 F(3,440) = .13 p = .94

Table 2.  AOI analysis. 2 (ages) × 2 (actions) × 5 (AOIs) ANOVA results for looking measures (fixation time, 
percent dwell time, and number of revisits). Asterisks denote significant differences.

Age F(1,440) = 19.68 p < .00*

AOI pairs F(9,440) = 133.37 p < .00*

Age × AOI pairs F(9,440) = 5.62 p < .00*
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Figure 3.  Looking patterns. (A) Probability maps representing the likelihood that children (left) and adults 
(middle) fixated each pixel during reaching (time interval from movement onset to the initial grasp). If the pixel 
is white, then the group’s probability of fixating that pixel is 0. As the probability increased, the pixel is clearer. 
When the probability is 1, the pixel is shown in its entirety. The right map represents the difference between 
the two probability maps. If the pixel is white, there is no significant difference between the two groups. If the 
video frame is shown in the pixel, then adults fixated more on this pixel than children did. The red circle denotes 
significant differences after correction for multiple comparisons. (B) Deep-learning classification of efficient and 
inefficient "looking videos" of individual participants. In the adult group, classification was significant for all 22 
participants; whereas in the child group, classification was significant only for 6 participants. Participants are 
ordered by accuracy. Black lines indicate range of shuffle accuracy for each participant. Each symbol represents 
accuracy based on the real labels. Symbols located along the line show insignificant accuracy relative to chance.
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As with pupil dilation, classification analyses showed differential EEG responses in adults to efficient versus 
inefficient initial grips, but not in children. In the classification stage (Fig. 5B), we examined whether neural 
signals evoked by the test videos in the areas defined by the individual subject localizer distinguish between 
efficient and inefficient actions. Adults showed significant above-chance classification performance (M = 79.2%; 
Fig. 5C). However, children did not show significant neural differentiation between the two actions (M = 57.3%).

Discussion
A novel combination of methods (eye tracking, pupillary responses, EEG, and machine learning) confirmed 
that observers’ motor efficiency affects their perception of efficient and inefficient actions. Specifically, at an age 
when children have difficulty planning efficient multi-step actions, they also have difficulty differentiating the 
efficiency of other people’s actions while grasping a hammer to pound a peg. On every measure, adults showed 
clear evidence of differentiating action efficiency, but preschoolers did not.
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Figure 4.  Pupillary responses to each display after movement onset in children (left panel) and adults (right 
panel). The change in children’s pupils was not significantly different during observation of videos of efficient 
versus inefficient actions. Adults’ pupil size was larger when observing inefficient planning compared to efficient 
planning starting about 1.1  seconds after the initial grip. Gray area denotes significant differences (false 
discovery rate corrected for multiple comparisons).

Table 3.  Localizer results. Cluster details for each participant in each group. # channels denotes the number 
of motor channels with at least one significant cluster. # of clusters denotes the average number of clusters per 
channel. Frequency range is the minimal and maximal frequencies for each participant’s clusters.

Children Adults

# channels # clusters Frequency range # channels # clusters Frequency range

1 2 6.40–8.19 3 4.66 5.85–25.00

1 3 6.03–13.75 4 1.75 5.85–12.78

4 2 5.85–13.70 1 2 8.80–17.23

1 7 6.68–19.51 4 2.50 7.03–22.24

1 3 6.85–19.65 5 5.40 6.03–23.07

1 1 5.85–7.03 10 3.90 6.03–25.00

2 8.50 5.85–18.95 4 2.75 6.07–25.00

7 7.71 5.85–25.00 2 7.50 6.53–24.70

2 7 5.85–24.81 1 1 11.45–13.16

1 1 6.44–7.61 1 2 12.32–25.00

1 1 6.97–7.78 1 3 6.85–18.13

1 1 7.78–9.34 2 5 6.85–21.60

2 7.50 5.85–25.00 1 3 5.85–25.00

1 18 5.85–25.00 2 4 5.98–15.90

1 5 7.50–21.29 5 3.20 5.85–24.60

1 4 6.03–11.79 1 11 6.25–25.00

3 2.33 5.85–22.08 8 3.12 6.85–12.97

2 2.50 6.03–13.06 7 4.85 5.85–20.53

1 4 7.85–20.68 1 7 13.16–23.07

1 6 5.85–21.92 4 8.50 6.85–25.00

2 4 6.63–18.54 1 5 6.85–25.00

1 4 6.44–21.14 1 4 12.41–23.58
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Motor skills facilitate action perception. Previous developmental research focused on how infants look 
at action  goals21–23 and whether they see when one goal differs from another. For example, researchers found 
that infants looked longer at an actor pulling a cloth to retrieve a toy after seeing the same action with a differ-
ent  toy24–26. Infants also show increased pupil dilation when viewing an unexpected change in a goal (moving 
food-laden spoon to the hand rather than  mouth27) and increased EEG activity in the gamma frequency band 
over primary motor  cortex28 for incomplete actions (end goal not achieved) compared to completed actions (end 
goal achieved).

In contrast to previous work, the current study focused on how young children look at the action means. 
Previous developmental work on the perception of action means focused primarily on infants and yields discrep-
ant findings. In some studies, infants showed evidence of perceiving the means to achieve a goal. For example, 
9-month-olds looked longer when grip aperture of a reaching hand (the means) and the size of a cup (goal target) 
were unmatched versus  matched29. Likewise, eye-tracking showed that 6- to 20-month-olds anticipate the goal 
based solely on how actors wield a  tool30,31. Moreover, 12- and 14-month-olds imitated unusual means to achieve 
a goal (turning on a light with their head rather than their hand), but only when the action was more efficient 
because the actor’s hands were  occupied32,33. Yet, other studies found that infants and children do not attend to the 
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Figure 5.  EEG results. (A) Event-related spectral perturbation map representing average changes in oscillation 
power across sensorimotor electrodes of children (top) and adults (bottom), collapsed across localizer 
videos. (B) Classification of action-related neural responses. For each participant, we used a SVM classifier 
to differentiate neural responses evoked by the two types of displays. We used the channels, frequencies and 
times of suppression that were identified in the localizer stage. (C) Classification analysis between efficient and 
inefficient action videos revealed that in the adult group, every participant showed significantly greater than 
chance differences in neural activity (right panel). In contrast, in the child group, no child showed classification 
levels significantly different from chance (left panel). Participants are ordered by accuracy. Black lines indicate 
range of shuffle accuracy for each participant. Each symbol represents accuracy based on the real labels. Symbols 
located along the line show insignificant accuracy relative to chance.
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efficiency of means to achieve a goal. Ten- to 12-month-olds showed no difference in looking time when actors 
changed the means to achieve a goal by pulling a different cloth or lifting a different  box34,35. Similarly, 12- and 
18-month-olds imitated the end goal of putting a mouse in a  house36, but not the means to get there (hopping 
motions and distinctive sounds). Three- to 5-year-olds37 imitated only the observed action goal (touching hand 
to ear) and not the means to achieve it (which hand touched target ear).

Our displays were designed to examine the effect of motor skills on perceiving the efficiency of action means. 
In prior work on action  production16, adults used the efficient means (grasping action) nearly uniformly: They 
used initial overhand grips when the hammer handle pointed toward their dominant hand and underhand 
grips when the handle pointed toward their non-dominant  hand38. In contrast, preschoolers rarely performed 
the efficient, underhand grip when the hammer handle pointed toward their non-dominant hand. Instead, they 
used the same overhand grip on most trials, so they primarily executed the inefficient  action16,17. In the current 
study, only adults showed differential looking patterns and neural activity between efficient and inefficient actions. 
These findings, as predicted by the motor resonance theory of action  perception10, suggest that the activation 
of observers’ own motor programs is built from their motor  experiences39,40, and so motor resonance generated 
differential responses only in adults.

Finally, our findings have implications for understanding how children learn from observation because 
they raise an important question: If children, as inefficient actors, cannot distinguish efficient from inefficient 
actions (when the goal is achieved in both), can they learn efficient actions by mere observation? Future research 
should address this question by training children in observing actions that are not in their repertoire and testing 
their efficiency. Future work should also investigate other factors in the display that might affect learning from 
observation such as the actors’ age and gender and the type of action performed (manual, locomotion, with or 
without objects).

Looking without seeing. Use of eye tracking, pupillary responses, and EEG allowed us to obtain evidence 
about where participants directed their gaze and what they “saw” or differentiated. Children looked at the end 
goal (peg) just as much as adults did. However, adults gathered more relevant visual information about the initial 
step in this multi-step action sequence as evidenced by longer looking to the performing hand and hammer, 
more gaze shifts between them, and more fixations on key areas that distinguished efficient from inefficient 
means.

Children, like adults, showed physiological responses to the displays, demonstrating that they indeed looked 
at the displays and paid attention to the actions. They showed increased pupil dilation (Fig. 4) and stronger mu 
suppression (Fig. 5A) after movement onset. However, unlike adults who exhibited differences in pupillary 
response and action-related neural activity when they observed efficient versus inefficient grasping actions, 
children showed the same response, regardless of condition. These findings suggest two related explanations for 
children’s failure to distinguish efficient from inefficient actions. First, children do not look at the right thing 
at the right time, so they cannot distinguish differences in the actors’ initial grip. Second, even if children had 
gathered the relevant visual information in the moments surrounding the grasp (and a handful of children did), 
their brains failed to process it adequately to notice differences in efficiency. In other words, looking is necessary 
but not sufficient to ensure that the relevant information is processed.

Indeed, our findings show that children’s action-related neural activity while observing actions does not guar-
antee that they registered the way the action was performed. First, children and adults differed in their pupillary 
dilation. Changes in pupil size reflect changes in the activity of neuromodulatory brainstem centers that relate to 
several cognitive functions and various mental states (e.g., “surprise” after violation of expectation.)18,41,42 Because 
we tested participants’ reactions to the displays using multiple measures (looking time, looking patterns, EEG), 
and participants’ responses were not related to mental states, it is more likely that group differences in pupillary 
responses arise from differences in the cognitive mechanisms underlying action observation.

Moreover, we found suppressed oscillation power in the mu frequency of the EEG signal in response to 
action observation. This finding supports previous evidence showing that observed actions are simulated in the 
observers’ own motor  system20,43. However, unlike adults, children’s pattern of activity did not differ between 
efficient and inefficient means. This finding points to an important, unanswered question regarding action-related 
neural activity: What features of the observed action are encoded in children’s mu suppression and how do these 
features change with development? Addressing this question in future research will improve understanding of 
mechanisms underlying children’s imitation and what they learn when they observe others.

Finally, the current study sheds light on how children perceive efficient actions but does not directly address 
the developmental question of whether perceiving efficiency precedes the ability to produce efficient actions. 
Some studies suggest that performing a motor action precedes or facilitates action  perception44,45 whereas other 
studies suggest that perception precedes action  production46 or that both develop  simultaneously47. Unfortu-
nately, with the current study design, testing how children execute a task before perceiving the same task would 
have created a perception bias, and testing the children after perception would have created an execution bias. 
We tested children at ages when they are inefficient in the hammering  task16, but further research is needed to 
test whether children who are efficient in producing actions react differently to observing efficient versus inef-
ficient actions.

The cost of anticipatory looking. We offer an additional suggestion. Children’s failure to notice differ-
ences in actors’ initial grip might result from their prediction of the end goal. Similar to previous eye-tracking 
 studies27,48,49, we found that children shift their gaze to the actor’s goal target (here, the peg) before the action is 
completed. Possibly, early gaze shifts come with a cost. If young children look at the goal target too soon—with-
out the frequent gaze shifts between peg and hammer displayed by adults—children may fail to notice the initial 
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grip. Thus, anticipatory eye movements reveal children’s ability to understand others’ motivations and intentions 
but may also indicate a failure to perceive how others performed the action.

Conclusion
We provide evidence that children fail to register elements in how others perform multi-step actions. They do 
not distinguish efficient from inefficient actions. Children also show deficits in planning and executing such 
actions themselves. Our findings suggest that observers’ own motor experience underlies the perception of 
action efficiency.

Methods
Videos of the displays, de-identified looking videos of the eye-tracking recordings, and EEG data are publicly 
available in the Databrary web-based library (databrary.org/volume/321). With participants’ permission, third-
person videos of their behaviors, individualized eye-tracking and EEG, and demographic data are also shared 
in Databrary with authorized researchers. The analysis codes are shared on Github (https:// anony mous. 4open. 
scien ce/r/ 321/).

Participants. We tested 22 children from 3.09 to 5.49 years of age (M = 4.06 years; 11 girls) and 22 adults 
from 19.37 to 26.40 years of age (M = 22.02 years; 14 women). Children were recruited from a pool of families 
in the NYC area who had expressed interest in participating in research. Adults were recruited through word of 
mouth. Most participants were white and middle class. Children received a robot toy, photograph magnet, and 
tote bag as souvenirs of participation, and adults received a photo magnet. Data from 10 additional children were 
not analyzed because they did not attend to the displays (6 children) or refused to wear the EEG cap (4 children). 
Data from an additional 7 adults and 10 children were excluded due to experimenter error in syncing the EEG 
with eye tracking and displays (see participants labeled “excluded” in the shared Databrary volume). The experi-
ment conformed to the guidelines approved by the ethics committee at New York University.

All participants were healthy with normal vision. We verified hand dominance so as to match the actor’s 
dominant hand in the video displays to each participant’s dominant hand. All adults reported one dominant 
hand (right = 20, left = 2). All children also had one dominant hand (right = 19, left = 3) based on parents’ report 
of which hand children used to brush their teeth, cut with scissors, and eat with a spoon, and on our observations 
of children cutting with scissors and drawing a line.

Videos of multi-step actions. Participants watched a set of “test” videos to determine their perception of 
multi-step actions, interspersed with “localizer” videos to determine their baseline neural responses to motor 
actions (see localizer videos at databrary.org/volume/321/slot/44645/-?asset=231593); all videos were recorded 
at 30 Hz. Test videos showed three adult actors grasping a hammer and pounding a peg. In half of the videos, 
actors used an efficient, underhand initial grip that led to an efficient, overhand grip to pound the peg (Fig. 1A). 
In the other half of the test videos, actors used an inefficient,  overhand initial grip that led to an awkward ulnar 
grip to pound the peg (Fig.  1B). To ensure that other elements of the display could not explain differences 
between actions, we varied the actor (several actors performed each type of action) and movement trajectories 
(differed across actors) across displays while keeping constant the visual saliency (identical environments across 
actions), target (all actors pounded the peg), and outcome (actors were always successful).

All videos began with the actors’ hands placed flat on the table and the hammer handle pointing toward the 
actors’ non-dominant hand. Actors began moving 2500 ms after the display onset to obtain reliable baseline 
measures of pupil size and the EEG signal. Each video was 5.4 s long. Videos were edited so that grasping the 
hammer and pounding the peg occurred at the same time in each clip, regardless of the actor. Moreover, we 
maintained similar luminance across displays to avoid artifacts in the pupil dilation  analysis42. Right-handed 
participants viewed actors pounding the peg with their right hand and left-handed participants viewed actors 
pounding the peg with their left hand.

Localizer videos were used to map the neural activity involved in action observation by portraying two addi-
tional actions to identify features in the neural signal (electrodes, frequencies, and times) that show sensitivity 
to action observation (see localizer videos at databrary.org/volume/321/slot/44645/-?asset=231603).

Unlike the test videos, the localizer videos do not show grips that are unique to children or adults. In one 
localizer video, the action starts with an overhand/radial grip and ends with an overhand/radial grip. This action 
has the same initial and end grips as the inefficient action in the test videos. However, unlike the inefficient action, 
the action includes a rotatory motion in which the wrist turned out away from the body and the fingers pointed 
downward toward the body (Figure S1-A). In the other localizer video, the action starts with an overhand/
ulnar grip, similar to the efficient action in the test videos. However, unlike the efficient action, it ends with an 
underhand/ulnar grip (Figure S1B).

Procedure. As shown in Fig. 1C, participants sat in a child or adult-sized chair in front of a 60-cm wides-
creen LCD monitor (1920 × 1200 resolution) with the height and orientation of the monitor adjusted to partici-
pants’ eye level. We dimmed the room light to improve the quality of the eye-tracking recording. Children were 
told they are going to watch cartoon movies and movies of actors hammering down a peg. A desk-mounted 
SMI eye tracker (SensoMotoric Instruments, RED, 120 Hz) recorded gaze location and pupil dilation. We used a 
4-point routine to calibrate the tracker, then validated the calibration with a second 4-point routine, and finally 
used a third 4-point routine at the end of the session to ensure that the calibration did not  deviate50.

We fitted participants with a child- or adult-sized, wireless, 32-channel EEG cap (Neuroelectrics, ENOBIO 
32, 500 Hz). Data were recorded from 32 scalp electrodes at locations of the extended 10–20 system and from 

https://anonymous.4open.science/r/321/
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two electrodes on the right mastoid. The single-ended voltage was recorded between each electrode site and 
CMS/DRL electrodes.

Each participant watched 96 videos in total (48 test videos and 48 localizer videos), presented in 8 blocks of 
12 videos interspersed with animated cartoons to maintain participants’ motivation and attention. Each block 
contained the same grasp-to-pound action performed by all three actors. Actors were pseudorandomized within 
blocks (no more than 3 displays by the same actor consecutively) and the order of blocks was randomized within 
age groups.

Eye-tracking: data processing and analyses. Areas of interest: We defined 5 rectangular areas of inter-
est (AOIs) for each video frame using SMI BeGaze software (Fig. 2A): the hammer (average size of area within 
and across videos = 12,397 pixels); the pegboard (30,223 pixels); the actor’s dominant and non-dominant hand 
(13,618 pixels for right hand; 12,961 pixels for left hand); and the actor’s face (25,112 pixels). The AOIs for the 
hammer, peg, and dominant hand are essential to capture the action (yellow, red, and orange areas in Fig. 2A)—
the hammer is the means to achieve the goal, the peg is the target of the action and the dominant hand is the 
moving hand. The AOIs for the the actor’s nondominant hand and face are known to attract observers’  gaze51–53, 
but are not essential to capture the action (blue areas in Fig. 2A).

To determine the percentage of time participants’ gaze tracked the action in the videos, we conducted dynamic 
area-of-interest analyses using the SMI BeGaze software. For each video frame, participants could look at one 
AOI, two or more AOIs (e.g., when the actor grasped the hammer or pounded the peg), or irrelevant areas (table, 
wall, etc.). Conflicts between overlapping AOIs were resolved by attributing gaze to the front-most AOI based on 
depth order. The AOI that most recently moved into the space of another AOI is the front-most. Percent “dwell” 
time was the total time that the gaze was on an AOI divided by the total tracking time. Percent “fixation” time 
was the total time that the gaze was on an AOI for at least 100 ms divided by the total fixation time. Frequency 
of “revisits” was the number of times participants shifted their gaze to an AOI from outside the AOI.

Scanning patterns: To test participants’ scanning patterns, we calculated moment-to-moment gaze shifts 
from one AOI to another. Gaze shifts occurred when participants fixated an AOI and then fixated a different 
AOI within 100 ms. We counted the number of gaze shifts between each pair of AOIs and averaged them across 
participants in each age group to obtain a 5 × 5 matrix per age group, where each cell represents the average 
number of gaze shifts between each pair of AOIs.

Temporal probability maps: Looking patterns from movement onset to the initial grasp reflect participants’ 
attention to the first step in the multi-step action. Thus, for each participant, we determined the probability of 
looking at the actor’s reach trajectory and grasp of the hammer handle by dividing the number of video frames 
each pixel was fixated (within a 75-pixel radius of participants’ gaze location to account for detection resolution) 
by the total number of video frames.

Averaging the probabilities across participants in each age group yielded two “temporal probability maps.” We 
then compared the maps using an unequal variance t-test for each pixel and corrected for multiple comparisons 
by controlling the False Discovery  Rate54 with a threshold of q(FDR) < 0.05.

Deep-learning analysis: We used a deep-learning video  classifier55 to determine whether participants gathered 
sufficient visual information to distinguish between the efficient and inefficient action plans. For each participant 
and trial, we created a “looking video” to represent the visual information gathered in each trial. That is, for 
each video frame in the looking video, the area within a 75-pixel radius of participants’ gaze was identical to the 
original display and the rest of the frame was black (Figure S2; all  looking videos: databrary.org/volume/321; 
example: databrary.org/volume/321/slot/25121/-?asset=232029). The resulting looking videos were used as input 
to the classifier. If participants paid sufficient visual attention to the initial step in the multi-step action, the 
classifier should be able to correctly distinguish efficient from inefficient actions based on the looking videos.

We applied the classifier separately for each participant. To classify the test videos based on the derived look-
ing videos, we created a deep-learning neural network that combines a pre-trained image classification model, 
convolutional neural network (CNN), and long-short term memory (LSTM) network. We used the Matlab Deep 
Learning Toolbox to (1) load a pre-trained GoogleNet model; (2) convert each video to a feature sequence using 
CNN; (3) create an LSTM network that classifies feature sequences; and (4) assemble a unified classification 
network using layers from both CNN and LSTM.

For each participant, we randomly chose one trial from a test video with an efficient action plan and one 
trial from a test video with an inefficient action plan as a “test set.” The remaining 46 trials (23 efficient and 23 
inefficient trials) were used as a “training set” for the classifier. We assessed the accuracy of the classifier by 
comparing its assigned labels to the trials which it was not trained on and the actual labels of the original test 
videos. Classification accuracy was assessed as the average performance level across 500 randomly chosen trials 
for the test-set (“leave-one-out” procedure). Significance was assessed by comparing the accuracy levels to a 
null distribution (p < 0.05) obtained by shuffling the labels of the trials (1000 shuffles) and performing the same 
classification procedure as on the original data.

Pupil dilation: data processing and analyses. We analyzed pupil dilation as in van Rij, et al.19. We used 
SMI BeGaze software to remove artifacts (blinks and saccades) from the pupil dilation signal. Visual inspection 
of the data corroborated automatic artifact rejection.

To analyze pupil response in relation to the actor’s movements in the videos, we down-sampled the pupil 
data to 30 Hz and aligned it to movement onset. “Baseline” pupil size was the average pupil size during the first 
1250-ms time window (in the period before movement began, as is customary). For each video frame of each 
trial, we defined pupil response as a percent of that trial’s baseline pupil size.
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EEG: data processing and analyses. Data were analyzed offline using the EEGLAB tool for  MATLAB56. 
Raw EEG data were band-pass filtered offline between 1 and 45 Hz (Butterworth filter, 24 db), and re-referenced 
offline to the digital average of the two mastoids. The continuous data were segmented into epochs from − 1.5 s 
to + 2.9 s relative to movement onset in each video. Eye movements and blinks were detected and removed using 
independent component analysis  (ICA57). Data were visually inspected for noise (such as movement artifacts) 
and eye-tracking data were used to exclude times from the EEG data when children did not look at the screen.

Time–frequency analysis: Event-related spectral perturbation (ERSP) was computed using a continuous Morlet 
wavelet transform. For each participant, we computed the logarithm of the power (from 0 to 2.9 s post-movement 
onset) relative to power during baseline (from − 1.5 to 0 s before movement onset). We defined suppression 
indices in the various frequencies as the average log-ratio values. A negative log-ratio indicates a suppression in 
the power of EEG oscillations relative to baseline, whereas positive log ratios indicate enhanced power.

Action observation localizer: Participants’ brains differ as do participants’ neural activity while observing 
actions. Thus, we used an individualized, data-driven approach to determine specific differences in neural activ-
ity due to viewing the efficient versus inefficient test video. The EEG signal to the localizer videos provides the 
frequencies, timing, and channels of neural activity related to action observation for each participant. We focused 
on significant suppression in the signal during the time between movement onset and hammering in the 6–20 Hz 
frequency range (frequencies previously reported as associated with action observation in children and  adults3,58. 
To this end, a nonparametric cluster analysis was performed on the power in bilateral sensorimotor sites (FC1-
5, C1-6, CP1-6) and bilateral occipital sites (O1 and O2) during action observation. Statistical significance was 
assessed with a well-established procedure that accounts for multiple  comparisons59. Electrodes with significant 
suppression were used for classification of data recorded during observation of the test-videos.

Classification analysis: We examined whether efficient and inefficient planning could be distinguished based 
on the neural activity related to action observation for each participant. Thus, for each participant, we constructed 
a support vector machine (SVM) classifier. The classifier was provided with the label of each trial (efficient or 
inefficient planning) and the corresponding power suppression in the time and frequency windows showing 
significant suppression as detected from the localizer data. We used a Matlab implementation of binary  SVM60 
and applied a least-squares cost function (C = 1).

To determine the classification accuracy for each participant, we used a standard leave-one-out classifica-
tion procedure in which we randomly chose one trial of an efficient and inefficient test video to serve as the 
“test set” and the classifier was trained on the remaining dataset. Following training, classification performance 
was assessed by comparing the classifier’s assigned labels to the test set (the trials which it was not trained on) 
and their real labels. The average performance level across 500 permutations was assigned as the classification 
accuracy. Similar to the deep learning analysis, significance was assessed by comparing the accuracy levels to a 
null distribution (p < 0.05) obtained by shuffling the labels of the data (1000 shuffles) and performing the same 
classification procedure as on the original data.
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